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Abstract

This paper describes how a portable benchmark suite
that measures the ability of an MPI implementation to
overlap computation and communication can be used
to discover and diagnose performance problems. We
describe the approach of the benchmark suite and dis-
cuss a performance problem that we uncovered with the
MPI implementation on the ASCI/Red supercomputer. A
slight modification to the MPI implementation has re-
sulted in a significant gain CPU availability and band-
width with a slight degradation in latency performance.
We present a detailed analysis of these results and dis-
cuss how the benchmark suite has enabled us to tailor
the MPI implementation to optimize for all three mea-
surements.

Keywords: System-area network, Message-passing,
MPI, Performance Analysis

1 Introduction

We have designed and implemented a portable bench-
mark suite called COMB, the Communication Offload
MPI-based Benchmark, that measures the ability of an
MPI implementation to overlap computation and MPI
communication. The ability to overlap computation with
communication is influenced by several system charac-
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tract number SF-6432-CR.

†Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Department
of Energy under contract DE-AC04-94AL85000.

teristics, such as the quality of the MPI implementation
and the capabilities of the underlying network transport
layer. For example, some message passing systems in-
terrupt the host CPU to obtain resources from the operat-
ing system in order to receive packets from the network.
This strategy is likely to adversely impact the utilization
of the host CPU, but may allow for an increase in MPI
bandwidth.

While our benchmark was developed to measure the
quality of MPI implementations on clusters, during the
initial development of the benchmark suite, we made
several runs on the ASCI/Red supercomputer at Sandia
National Laboratories. Initially the runs were made to
validate the results of the benchmark suite on a tightly-
coupled parallel platform. However, the benchmark
suite revealed a subtle but significant performance prob-
lem with the MPI implementation. In relating these re-
sults and a subsequent change to the implementation to
correct the problem, we demonstrate that the benchmark
suite can provide greater insight into the relationship be-
tween network performance and CPU performance.

The rest of this paper is organized as follows. In
the next section, we provide general background for
our interest in processor availability. Section 3 de-
scribes the benchmark suite. In Section 4, we provide
an overview of the hardware and software environment
of the ASCI/Red supercomputer. Section 5 presents ini-
tial results from the benchmark suite and describes the
performance problem that was revealed. This section
continues by describing a small MPI enhancement and
the resulting performance impact. Section 6 discusses
the conclusions of this paper.
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Producer:
double A[BSIZE], B[BSIZE];

fill A;
wait CTS A; isend A;

fill B;
wait CTS B; isend B;

for( i = 0 ; i ¡ n-1 ; i++ ) {
wait A sent; fill A;
wait CTS A; isend A;

wait B sent; fill B;
wait CTS B; isend B;

}

Consumer:
double A[BSIZE], B[BSIZE];

ireceive A; isend CTS A;

ireceive B; isend CTS B;

for( i = 0 ; i ¡ n ; i++ ) {
wait A received; sum A;
ireceive A; isend CTS A;

wait B received; sum B;
ireceive B; isend CTS B;
}

Figure 1. Pseudocode for Double Buffering

2 Background

Like most supercomputers, ASCI/Red and the sys-
tems software for ASCI/Red was developed to sup-
port “resource constrained applications,” applications
for which the problem size can be scaled to consume
all of one or more of the resources provided by the
computing system. That is, the size of the problem is
constrained by the availability of specific resources. In
many cases, these applications are constrained by the
availability of processor cycles. The ability to manage
processor cycles is critical for these applications.

To support application programmers in their efforts
to manage processor cycles, the MPI standard includes
non-blocking send and receive operations. These opera-
tions are included in the standard to permit overlap be-
tween computation and communication. In particular,
an application programmer can initiate a non-blocking
communication operation (either a send or a receive)
and continue with a meaningful part of their computa-
tion while the communication progresses. Later, the ap-
plication can poll for the completion of the communica-
tion. If the standard only provided blocking operations,
the processor cycles during communication would not
be available to the application and would be wasted.

2.1 Double Buffering

Perhaps the simplest example of overlapping com-
putation and communication involves the use of double

buffering. In an earlier experiment[6], we measured the
time taken to produce and sum a long stream of floating
point numbers. In this experiment, the application con-
sists of two processes, a producer and a consumer. The
producer uses a random number generator to produce a
stream of double precision floating point values and the
consumer calculates the sum of the values it receives.
The producer prepares a batch of numbers which are
then sent to the consumer. The consumer provides two
buffers so that the producer can fill one buffer while the
consumer is processing the other buffer. Pseudo-code
for the producer and consumer processes is presented in
Figure 1.

In examining this code, notice that the producer
uses non-blocking sends to transmit filled buffers. This
should allow the producer to overlap its filling of one
buffer with the sending of the previously filled buffer.
Similarly, the consumer uses pre-posted, non-blocking
receives. When the producer is faster than the consumer,
this should allow the consumer to overlap the processing
of one buffer with the reception of the next buffer.

Our experiments compared MPICH/GM[7] with an
implementation of MPI over Portals[2]. Even though
the MPICH/GM communication bandwidth was sub-
stantially higher (80 MB/s versus 50 MB/s), the over-
all processing rate was significantly better, 15%, when
we used MPI over Portals. The improvement is due to
the fact that the MPI over Portals implementation allows
complete overlap of computation with communication.
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2.2 Availability and Utilization

The reader may note that we present our discussion
and results in terms of processor availability, how much
of the processor is available to the application, rather
than processor utilization, how much of the processor is
utilized during communication. The two terms are effec-
tively inverses of one another, that is, high availability
implies low utilization and vice versa. While it is com-
mon practice to report processor utilization, we find that
utilization sends the wrong message. Utilization seems
to be a good thing and one naturally assumes that higher
utilization is better when, in fact, the opposite is actually
the case.

Ultimately, the difference is one of perspective. We
find that using the term availability keeps us focused on
the fact that we are trying to provide resources to appli-
cations.

3 The COMB Benchmark Suite

In 1999, White and Bova[10] noted that many MPI
implementations do not support overlapping computa-
tion with communication, even though it is clear that
the MPI standard intended that implementations support
this overlap. Given our experience in the double buffer-
ing experiment and the observation of White and Bova,
we set out to measure the degree to which MPI imple-
mentations supported overlap between computation and
communication.

The COMB benchmark[5] suite consists of two dif-
ferent methods for measuring the performance of a sys-
tem, each with a different perspective on characterizing
the ability to overlap computation and MPI communica-
tion. This multi-method approach captures performance
data on a wider range of the system and allows for results
from each benchmark to be validated and/or reinforced
by the other. The first method, the Polling Method, al-
lows for the maximum possible overlap of computation
and MPI communication. The second method, the Post-
Work-Wait Method tests for overlap under practical re-
strictions on MPI calls.

3.1 Polling Method

The polling method uses two processes, one process,
the worker process, counts cycles and performs message
passing. A second, support process, runs on the sec-
ond node and only performs message passing. Figure
2 presents pseudo code for the worker process. All re-
ceives are posted before sends. Initial setup of message

read current time
for( i = 0 ; i < work/poll factor ; i++ ){

for( j = 0 ; j < poll factor ; j++){
/* nothing */

}
if(asynchronous receive is complete){

start asynchronous reply(s)
post asynchronous receive(s)

}
}
read current time

Figure 2. Polling Method Psuedocode For
Worker Process
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Figure 3. Overview of Polling Method

passing as well as conclusion of same are omitted from
the figure. Additionally, Figure 3 provides a pictorial
representation of the method.

This method uses a ping-pong communication strat-
egy with messages flowing in both directions between
sender node and receiver. Each process polls for mes-
sage arrivals and propagates replacement messages upon
completion of earlier messages. After a predetermined
amount of computation, bandwidth and CPU availabil-
ity are computed. The polling interval can be adjusted to
demonstrate the trade-off between bandwidth and CPU
availability. Because this method never blocks waiting
for message completion it provides an accurate report of
CPU availability.

As can be seen in Figure 2, after a fixed number
of iterations in the inner loop the worker process polls
for receipt of the next message. The number of itera-
tions of the inner loop determines the time between polls
and, hence, determines the polling interval. If a test for
completion is negative, the worker process will iterate
through another polling interval before testing again. If
a test for completion is positive, the process will post
related messaging calls and will similarly address any
other received messages before entering another polling
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interval. The support process sends messages as fast as
they are consumed by the receiver.

We vary the polling interval to elicit changes in CPU
availability and bandwidth. When the polling interval
becomes sufficiently large all possible message transfers
may complete during the polling interval and communi-
cation then must wait, resulting in decreased bandwidth.

The polling method uses a queue of messages at each
node in order to maximize achievable bandwidth. When
either process detects that a message has arrived, it iter-
ates through the queue of all messages that have arrived,
sending replies to each of these messages. When we set
the queue size to one, a single message passed between
the two nodes then the polling method acts as a standard
ping-pong test and maximum sustained bandwidth will
be sacrificed.

The benchmark actually runs in two phases. During
the first, dry run, phase the amount of time to accom-
plish a predetermined amount of work in the absence of
communication is recorded. The second phase records
the time for the same amount of work while the two pro-
cesses are exchanging messages. The CPU availability
is reported as:

availability =
time( work without messaging )

time( work plus MPI calls while messaging )

The polling method reports message passing band-
width and CPU availability, both as functions of the
polling interval.

3.2 Post-Work-Wait Method

While the polling method yields a great deal of useful
information, it does not identify implementations that
violate the “progress rule” of MPI. This rule requires
communication progress even if the application is in-
volved in computation and never makes a call to the
MPI library. Because the polling method makes regu-
lar, polling calls to the MPI library, it cannot uncover
problems related to the progress rule. Here it is wor-
thing noting that MPICH/GM does very well when eval-
uated using the polling method. The problems that we
observed in the double buffering experiment are only ap-
parent when you do not mix MPI library calls during
communication.

The Post-Work-Wait Method mixes MPI communi-
cation and computation in a serial manner: post non-
blocking MPI messages, perform computation (the work
phase), and wait for the messages to complete. This
strict order introduces a significant and reasonable re-
striction at the application level: the underlying com-
munication system can overlap MPI communication and

computation only if, after the initial MPI calls, the mes-
sage passing system requires no further intervention by
the application in order to progress communication. We
define the term application offload to describe this capa-
bility. The PWW method detects whether systems ex-
hibit application offload and identifies where host cycles
are spent on communication.

Figure 4 presents a pictorial representation of the
method. With respect to communication, the PWW
method performs message handling in a repeated pair
of operations: 1) posting non-blocking send and receive
calls and 2) wait for the messaging to complete. Both
processes simultaneously send and receive a single mes-
sage. The worker process performs work after the non-
blocking calls before waiting for message completion.
The work interval is varied to effect changes in CPU
availability and bandwidth.
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Figure 4. Post-Work-Wait Method

The PWW method collects wall clock durations for
the different phases of the method. Specifically, the
method collects individual durations for i) the non-
blocking call phase, ii) the work phase, and iii) the wait
phase. Of course, the method also records the time
necessary to do the work in the absence of messaging.
These phase durations are useful in identifying commu-
nication bottle necks or other causes of poor communi-
cation.

4 Sandia/Intel ASCI/Red Machine

The Sandia/Intel ASCI/Red machine[8] is the De-
partment of Energy’s Accelerated Strategic Computing
Initiative (ASCI) Option Red machine. It was installed
at Sandia National Laboratories in 1997 and was the
first computing system to demonstrate a sustained ter-
aFLOPS level of performance. The following briefly de-
scribes the hardware and system software environment
of the machine.

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02) 
0742-1303/02 $17.00 © 2002 IEEE 



4.1 Hardware

ASCI/Red is composed of more than nine thousand
333 MHz Pentium II Xeon processors connected by a
network capable of delivering 400 MB/s unidirectional
communication bandwidth. Each compute node con-
tains two processors and 256 MB of main memory. Each
compute node also has a network interface chip (NIC)
that resides on the memory bus, allowing for low-latency
access to the network.

4.2 Software

The compute nodes of ASCI/Red run a variant of a
lightweight kernel, called Puma [9], that was designed
and developed by Sandia and the University of New
Mexico. A key component of the design of Puma is a
high-performance data movement layer called Portals.

Portals in Puma are data structures in an application’s
address space that determine how the kernel should re-
spond to message-passing events. Portals allow the ker-
nel to deliver messages directly to the application with-
out any intervention by the application process. In par-
ticular, the application process need not be the currently
scheduled process or perform any message selection op-
erations, such as tag matching, to process incoming mes-
sages. We refer to this feature as application offload,
since the application need not be involved in the transfer
of data once the operation has been set up.

In Puma, all of the resources on a compute node are
managed by the system processor. This is the only pro-
cessor that performs any significant processing in super-
visor mode. The remaining processor runs application
code and only rarely enters supervisor mode. This pro-
cessor is called the user processor. This arrangement
produces a slight asymmetry in the performance of the
processors, but it greatly simplifies the structure of the
Puma kernel and maximizes the processor cycles avail-
able to the applications.

4.3 Processor Modes

Puma supports four different modes that allow differ-
ent distributions of application processes on the proces-
sors. The processor mode is determined at run-time for
the processes in a parallel job when the job is launched.
The following describes each of these processor modes.

The simplest processor usage mode is to run both the
kernel and application process on the system processor.
This mode is commonly referred to as “heater mode”

since the second processor is not used and only gener-
ates heat. In this mode, the kernel runs only when re-
sponding to network events or in response to a system
call from the application process. This mode does not
offer any significant performance advantages to the ap-
plication process.

In the second mode, message co-processor mode, the
kernel runs on the system processor and the application
process runs on the user processor. When the proces-
sors are configured in this mode, the kernel runs contin-
uously waiting to process events from external devices
or service system call requests from the application pro-
cess. Because the time to transition from user mode, to
supervisor mode, and back to user mode can be signifi-
cant, this mode offers the advantage of reduced network
latency and faster system call response time. Because of
the increased message passing performance, this mode
favors applications that are latency bound.

In the third mode, compute co-processor mode, the
system processor and user processor both run the kernel
and an application process. However, the kernel code
running on the application processor does not perform
any resource management activities, it simplify notifies
the system processor when a system call is performed.
The advantage of this mode is that it provides more pro-
cessor cycles for the application. However, the two pro-
cessors are not symmetric since the part of the appli-
cation running on the shared system processor will not
progress as rapidly as the portion of the application run-
ning on the dedicated user processor. In order to use
this mode, the application must be use a non-standard
library interface that executes a co-routine on the appli-
cation processor. Because of the opportunity to utilize
both processors, this mode favors applications that are
compute bound.

Finally, in the fourth mode, known as virtual node
mode, the system processor runs both the kernel and
an application process, while the second processor also
runs the kernel and a full separate application process.
This mode essentially allows a compute node to be
viewed by the runtime system as two independent com-
pute nodes. The asymmetry of compute co-processor
mode also exists in this mode, so the application process
running on the user processor is likely to receive slightly
more processor cycles than the application process run-
ning with the kernel on the system processor. This mode
allows applications to avail of the user processor more
easily, since the application does not need to be modi-
fied to use the non-standard co-routine interface.

In the remainder of this paper, we restrict our discus-
sion to a comparison between standard mode (proc mode
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0) and message co-processor mode (proc mode 1).

4.4 MPI Implementation

The MPI library for Puma Portals on ASCI/Red [3] is
a port of the MPICH [4] implementation version 1.0.12.
This implementation of MPI was validated as a product
by Intel for ASCI/Red in 1997 after significant testing
and has been in production use with few changes since.

The performance of the MPI implementation on
ASCI/Red was studied [1] using traditional ping-pong
latency and bandwidth tests. In comparison to the
performance of the underlying Portals layer, MPI was
shown to nominally increase latency and was able
to achieve nearly identical bandwidth performance in
both standard processor mode and message co-processor
mode. Figure 5 shows the MPI half round trip latency
performance for the standard mode (proc0) and message
co-processor mode (proc1). Figure 6 shows the MPI
bandwidth numbers for these processor modes.
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Figure 5. MPI Half Round-Trip Latency

5 COMB Results and Analysis

Because the results obtained using the ping-pong
benchmark in 1997 did not uncover any unexpected per-
formance issues, we turned our efforts to other projects.
One of those projects involved the development of the
COMB suite. The intent of the COMB suite was to eval-
uate the ability of MPI implementations to overlap com-
putation with communication on high-end clusters, in
particular systems built with programmable network in-
terface cards like Myrinet or the Alteon Acenic Gigabit
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Figure 6. MPI Ping-Pong Bandwidth

Ethernet cards. On a whim, we thought it would be in-
teresting to run the benchmarks contained in the COMB
suite on ASCI/Red.

In this section we describe the performance problem
that the PWW method revealed, how the MPI implemen-
tation was modified, and show the impact of this change
on the performance of all of the benchmarks, including
latency and bandwidth.

5.1 Initial Results

Figure 7 presents the bandwidth as a function of the
work interval for 100 KB messages. This figure includes
separate graphs for both processor modes. Given the dif-
ferences in how bandwidth is measured in the PWW and
ping-pong benchmarks, the results presented in Figure 7
are consistent with the earlier results presented in Fig-
ure 6.

In addition to bandwidth, the PWW benchmark re-
ports the processor availability during communication.
In this case, availability is reported as the ratio between
the time to complete the work interval with no commu-
nication and the time to complete the work interval (and
wait for message completion) while communication is
progressing. Figure 8 shows CPU availability as a func-
tion of the work interval for 100 KB messages on all
three processor modes.

The general shape of the curves shown in Figure 8
reflects the PWW definition of availability. When the
work interval is relatively small, the work interval is too
short to cover the time needed to transmit the message.
This wait while delayed functionality suppresses appar-
ent CPU availability until the work interval becomes suf-
ficiently long to fill the delay period of time.
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While the shape of the curves was expected, we were
surprised by the fact that there was no separation be-
tween these curves. Given that message passing is en-
tirely handled by the system processor in message co-
processor mode, we had expected that the availability
would be significantly higher

Further analysis of the data provided by the PWW
benchmark identified the source of the problem. In par-
ticular, the PWW benchmark provides the time taken to
post each message. In message co-processor mode, we
would expect that the time to post a message would have
little or no dependence on the size of the message, since
the application process can make a request to the ker-
nel to start the transfer and then return to computation.
However, when we looked that the posting times for var-
ious message sizes, we saw that PWW was reporting a
direct relationship between the post time and the length
of the message. Figure 9 shows the post time for four
message sizes across varying work intervals in message
co-processor mode.

The results in Figure 9 indicated that the MPI non-
blocking operations were waiting for the data transfer to
be completed before returning from the library. A quick
inspection of the MPI implementation confirmed that
non-blocking MPI send calls would trap to the kernel
for the data transfer request and then immediately wait
for the kernel to complete the transfer before returning
from the call. By doing this, the MPI library eliminates
any possibility of overlapping computation with sending
messages.

This limitation does not have any effect in standard
mode, since the kernel must complete the data transfer
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Figure 8. CPU Availability for 100KB Mes-
sages

before returning control the application process anyway.
The standard ping-pong benchmark used to measure la-
tency and bandwidth does not reveal this problem either,
since it only evaluates network performance and does
not consider processor overhead. For these reasons, the
loss of opportunity to overlap in message co-processor
mode went undetected.

5.2 MPI Enhancement

The MPI implementation was modified to return im-
mediately after making a send request to the kernel.
This change involved moving the structure that indicates
send completion from the local stack into the send re-
quest structure. Rather than waiting for completion of
the send immediately after making the request, the MPI
implementation checks or waits for completion in the
MPI Test() or MPI Wait() family of functions. In mes-
sage co-processor mode, this gives the kernel an oppor-
tunity to transfer the data while the application process
continues computing.

5.3 Impact of the Change

We now present several results that show the impact
of this small change on latency, bandwidth, overhead,
and CPU availability for the different processor modes
in Puma. In some cases, this enhancement led to signif-
icant gains in performance.

Figure 10 presents the processor availability graph
for using the modified MPI implementation. We now
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see the improvement in processor availability for mes-
sage co-processor mode that we had expected to see.
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Figure 11 compares the MPI half round trip latency
performance of the previous implementation with the
new implementation for both processor modes. The re-
sults are mixed. For message co-processor mode, la-
tency was improved by about 1 µsec. However, in
standard mode, the new implementation is about 1
µsecworse.

Figure 12 compares the MPI bandwidth performance
of the previous implementation with the new implemen-
tation. The numbers are nearly identical for both modes.
For standard mode, the performance of the new imple-
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Figure 11. New MPI Half Round-Trip La-
tency

mentation exceeds the old one at around 3 KB. In mes-
sage co-processor mode, the numbers are virtually iden-
tical.
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6 Discussion

While the COMB benchmark suite was initially de-
veloped to compare MPI implementations for cluster
systems, we thought it might be interesting to run the
benchmarks on ASCI/Red. The PWW benchmark was
a valuable tool that revealed a significant performance
problem with the MPI implementation on ASCI/Red.
We believe this benchmark to be a valuable tool in mea-
suring message passing performance relative to proces-
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sor availability. We have demonstrated its ability to ex-
pose and help diagnose performance problems that other
traditional message passing benchmarks do not.
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